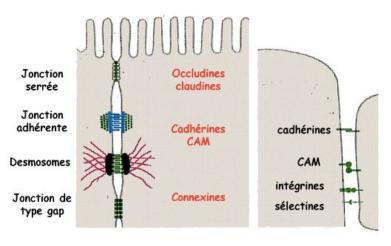
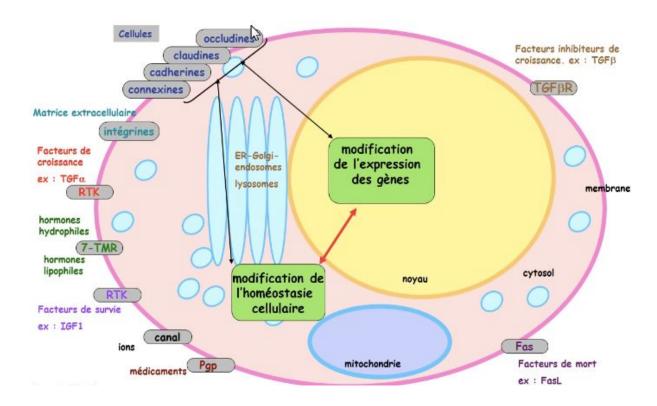

BIOLOGIE

INTERACTIONS CELLULE-CELLULE ET SIGNALISATION

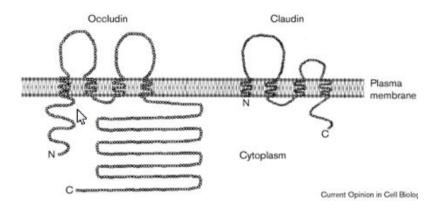

I) Introduction

A) Les cellules doivent **coopére**r entre elles et avec leur environnement


B) Ils existent trois types de **jonctions intercellulaires** : serrées, d'ancrage, communicantes

Il existe également des contacts non jonctionnels.

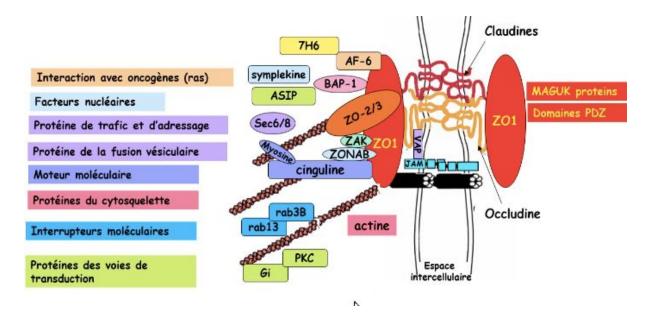
Ils peuvent initier des adhérences intercellulaires spécifiques qui pourront être stabilisées ensuite par des complexes jonctionnels.


C) Pour coopérer entre elles les cellules utilisent des **voies de communication**

→ Conséquences au niveau physiopathologique

Les anomales de ces voies de communication sont à la base de nombreuses pathologies comme laumorigénèse, anomalies du developpement, inflammation ou fibrose...

- II) Jonctions serrées : imperméabilité d'un tapis cellulaire
- A) Rappel sur les jonctions serrées : structure, composition, fonction

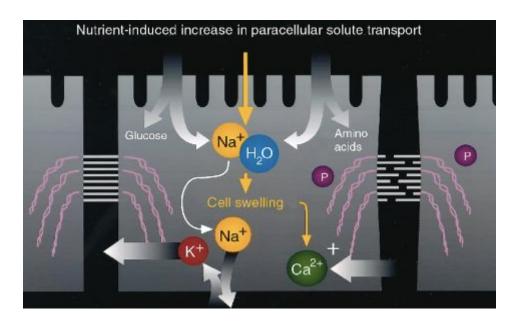

Deux familles de protéines intramembranaires formant la jonctions serrées : **claudines** (contact ionique) et **occludines** (contact hydrophobe).

Ce sont des tétraspamines ou des protéines comportant **4 hélices transmembranaire**). Elles ont des sites d'interaction **homotypiques** du coté **EC** et **hétérotypique** avec de nombreuses protéines du coté **cytoplasmique**.

La longueur de la queue a une influence sur le nombre d'**interactions** avec les protéines intracellulaires.

B) Signalisation associée aux jonctions serrées

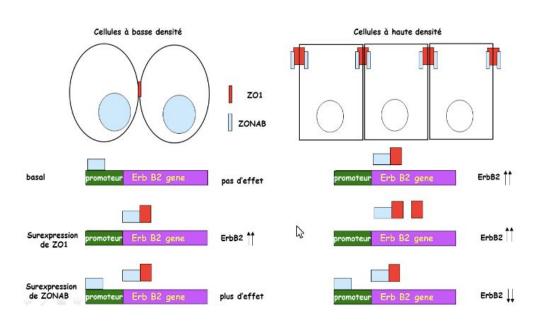
La transmission des infos par les contacts cellules - cellules dans les jonctions serrées est assurée par un vaste **ensemble de protéines** aux fonctions multiples.



- Les **oncogènes** peuvent avoir besoin d'activation ou inhibition. Si cofacteur AF-6 sur fonction serrée : contrôle.
- **Facteurs nucléaires** : pour les mécanismes de transduction du signal : contrôle des voies de signalisation IC
- **Sec6/8**: tri vers le pôle apical ou basal
- Moteurs moléculaires : myosine II, III (= courtes), singuline.
- Microfilaments d'actine se fixent sur ZO1.
- Protéines d'échafaudage : MAGUK = mb baso, guanylate kinase : P de GDP.
 Dom PDZ = domaine qui permet la construction de l'échafaudage

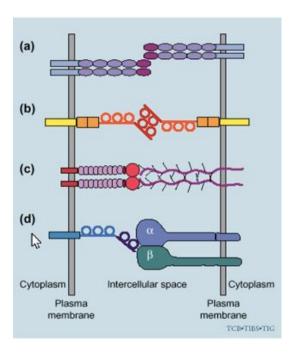
Le nombre des interactions expliquent l'importance des jonctions serrées dans le contrôle des voies de signalisation.

C) Physiopathologie des jonctions serrées


Régulation physiologique de la perméabilité péricellulaire

L'entrée de Na+ et de glucose ou d'AA peut modifier la **concentration de Ca2+**. L'état de P des éléments du cytosquelette est ainsi modifié et conduit à une **contraction** permettant l'**ouverture transitoire** de la jonction.

Les jonctions serrées étant connectées à l'actine et aux moteurs moléculaires qui permettent de tirer sur les jonctions serrées.


Régulation de l'expression d'oncogènes : ZO1-ZONAB et erbB2

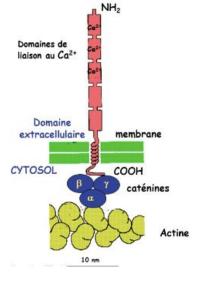
ZO1-ZONAB est un répresseur de transcription d'erbB2.

III) Jonctions d'ancrage : assurer l'attachement des cellules entre elles

A) Rappel sur les jonctions d'ancrage : structure, composition, fonction

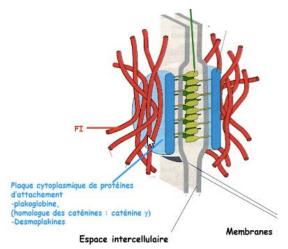
- jonctions impliquant des cadhérines : jonctions adhérentes et desmosomes
- jonctions impliquant des CAM de la superfamilles des Ig (IgCAM)
- jonctions impliquant des sélectines et leurs récepteurs.
 Haute spécificité des interaction carbohydrates
- jonctions impliquant des intégrines

Toutes les jonctions d'ancrages sont liées au cytosquelette.


Les cadhérines sont les protéines majeures des jonctions adhérentes, impliquant l'actine. Elles sont dépendantes du Ca2+.

Il existe **plusieurs types** de cadhérines :

- E (uvomoruline) : épithélia
- N: tissu nerveux, coeur
- P: placenta, épiderme

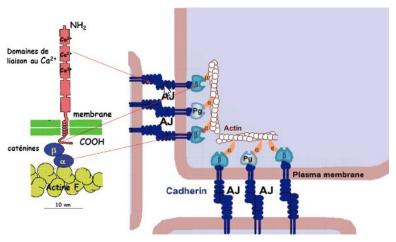

Liaison par lien extracellulaire Elles ont un rôle majeur dans l'**adhérence** et la **morphogénèse**. Elles réalisent des liaisons de type **homophile**.

La cadhérine traverse la membrane et se lie en IC avec une caténine liée à l'actine.

Les desmosomes sont des jonctions d'ancrage impliquant les filaments intermédiaires.

Ce sont des **points de contact** intercellulaire en forme de bouton poussoir. Ils sont localisés sous les jonctions serrées et les jonctions adhérentes.

Les desmosomes contiennent des <u>protéines</u> <u>spécifiques</u> : cadhérines spé = **desmogléine** et **desmocoline**.

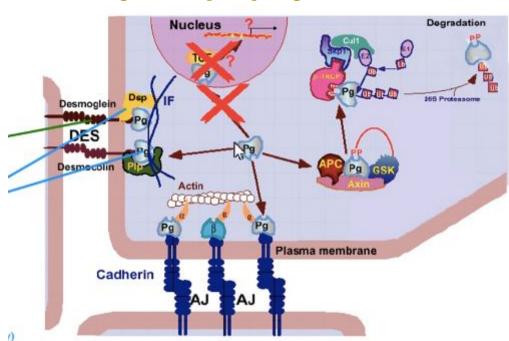

Ce sont des structures complexes impliquant de nombreuses protéines de nature différentes.

Une plaque cytoplasmique contient des <u>protéines d'attachement</u> : **plakoglobine** (homologue des caténines : caténine) et **desmoplakine**.

Les desmosomes sont connectées aux FI. Dans les cellules épithéliales, ces FI sont constitués de **kératines**, dans les cellules cardiaque de **desmine**.

B) Signalisation associée aux jonctions d'ancrage

Signalisation par la β caténine

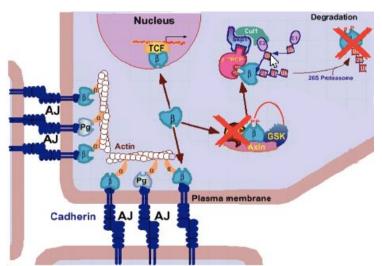


Il existe **trois types** de caténine :

- alpha → lie
 directement l'actine
- bêta → interagit avec
 alpha et avec la cadhérine
 ++ (exprimée au niveau des
 jonctions et du cytoplasme
 → prise en charge par les
 pores nucléaires → noyau)
 - gamma (plakoglobine)
 → impliquée dans
 plaques d'attachement
 des desmosomes

Les caténines interviennent dans les jonctions adhérentes et dans les jonctions d'ancrage mais aussi comme **cofacteur nucléaire** (β).

Le rôle de la caténine est essentiel : il en existe un **pool cytoplasmique**. Elle oscille donc entre membrane plasmique et noyau. Dans les condition normales, elle est **cytoplasmiqe** (en excès) et phosphorylée par un **complexe multiprotéique**. Cette phosphorylation permet sa dégradation par le protéasome et bloque ainsi son rôle de **facteur transcriptionnel**.



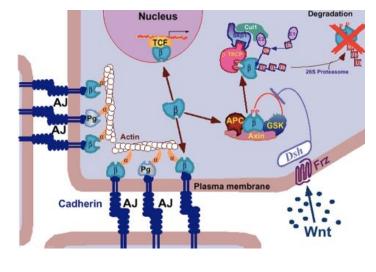
Signalisation par la plakoglobine (γ caténine)

La plakoglobine se comporte d'une manière très similaire à la caténine.

C) Physiopathologie des jonctions d'ancrage

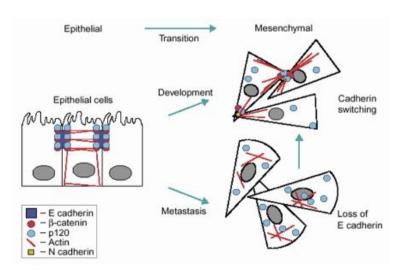
Des mutaions du **gène APC** (qui recrute la caténine après sa phosphorylation pour l'adresser au protéasome) sont retrouvées dans une catégorie de **cancers familiaux du colon**, et au cours de l'évolution de nombreux **cancers sporadiques du colon**.

Absence APC fonctionnel


- → Caténine active **TCF**
- → Complexe cat/TCF va activer ta **transcription** de gènes cibles
- → Phénomènes **physiologiques** de réparation et **pathologiques** comme le cancer

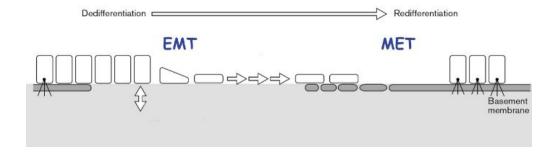
Il existe des **voies inhibitrices de la GSK3** : voie de signalisation **Wnt**.

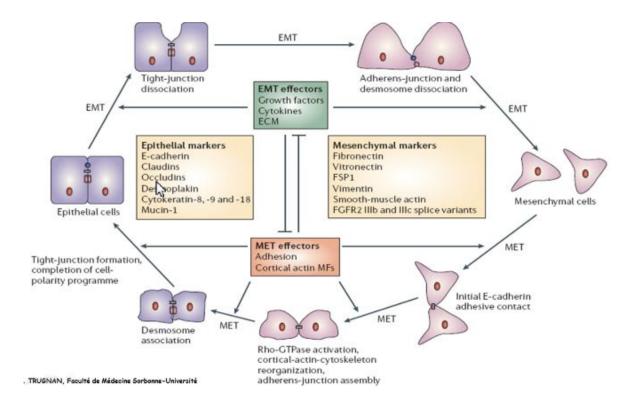
Des molécules wnt solubles (sécrétées) interagissent avec un récepteur membranaire : Frizzled, qui active une protéine IC dishevled qui inhibe GSK.


La cat n'est **plus phosporylée** et n'est plus adressée au protéasome, entraînant une

augmentation de l'activité transcriptionnelle.

L'activation de la voie wnt est mise en œuvre au cours du **développement normal** (embryo) et dans des **pathologies tumorales**.


Altération des cadhérines

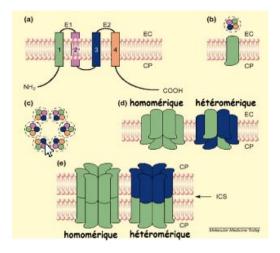


Dans de nombreux cancers (et certains processus du dev), la E-cadhérine est remplacées par la N-cadhérine qui ne possède plus les même capacités à former des jonctions adhérentes fonctionnelles.

- → Switch moléculaire
- → **Déstabilisation** des jonctions d'ancrage + modif contact C-C
- → **Dédifférenciation** remise en route du programme de prolifération cellulaire

Transitions épithélium-mesenchyme (EMT) et mésenchyme-épithélium (MET)

Situations **physiologiques** : développement embryonnaire réparation tissulaire


Situations **pathologiques** : inflammation/cancer

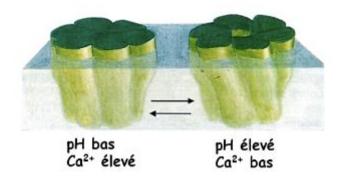
III) Jonctions communicantes : assurer une communication directe

A) Rappel sur les jonctions communicantes : structure, composition, fonction

Les jonctions communicantes GAP permettent le passage de **petites molécules** taille <1000Da et ont une **morphologie caractéristique** (longue, ou courte).

Les jonctions GAP sont constituées de **connexons**, eux même formés de **6 connexines** id (homodimériques) ou ≠ (hétérodimérique).

Il existe de **nombreuses connexines** qui sont partiellement spécifiques des tissus dans lesquels elles sont exprimées.

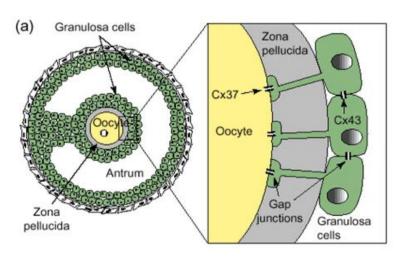

Elles possèdent 4 domaines TM, 2 boucles EC, 1 boucles IC et 2 extrémités IC. Un canal intercellulaire est formé par la juxtaposition de 2 connexons.

Les jonctions GAP sont dynamiques

- synthèse des connexines
- assemblage des connexines en connexons
- adressage à la membrane via t.
- pas encore fonctionnel quand il arrive, il le devient quand il entre en contact avec le connexons de la cellule voisine
- fixation de protéines accessoires sur le connexon
- internalisation
- dégradation
- recyclage des acides aminés

B) Signalisation associée aux jonctions communicantes

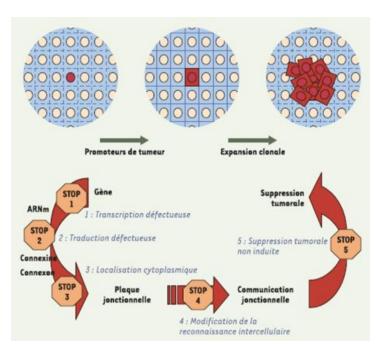
La signalisation dépend des molécules transportées



Un changement de conformation des **connexines** permet l'ouverture et la fermeture de la jonction. Les cibles de cette signalisation sont extracellulaire, intracellulaire et intercellulaire : **prolifératoin**, **différenciation**, **apoptose**, **métabolisme**.

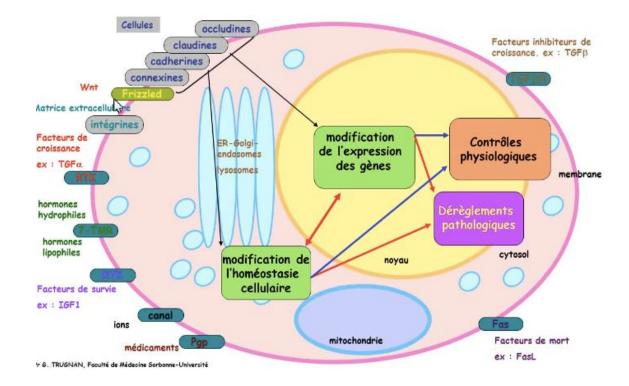
La signalisation dépend des protéines partenaires des connexines

La signalisation dépend des protéines **kinases** et des p**rotéines liées au cytosquelette**. Ces canaux sont régulés et contrôlés.


C) Physiopathologie des jonctions communicantes

Dans l'ovocyte, les différents types de cellules communiquent entre elles par l'intermédiaires des **GAP** (rôle dans nutrition +++).

- Mutation **connexine 37** → **infertilité** congénitale.
- Mutation **connexine 26** → **surdité** congénitale.


Jonctions communicantes et cancer

Dans certains cancer, l'expression de certaines connexines **diminue**.

Le **rétablissement** de l'expression de certaines connexines ne conduit **pas obligatoirement** à un effet suppresseur des tumeurs.

Conclusion

